Archive for the ‘Diving Tip’ Tag

For the First Time in Decades, Scientists Examine How Oil Spills Might Affect Baleen Whales

Several days of unseasonably warm weather in late September had Gary Shigenaka starting to wonder how much longer he and his colleagues would be welcome at Ohmsett, a national oil spill research facility in New Jersey.

March 16, 2016 Leave a comment

A North Atlantic right whale's mouth is visible at the ocean surface.

NOAA scientists and partners recently collaborated to examine how oil and dispersants might affect the function of baleen in humpback, bowhead, and right whales (pictured). Hundreds of baleen plates hang from these whales’ top jaws and allow them to filter food from the water. (Credit: Georgia Department of Natural Resources, Permit 15488)

They were working with whale baleen, and although the gum tissue anchoring their baleen samples had been preserved with formalin, the balmy fall weather was taking a toll. As a result, things were starting to smell a little rank.

Fortunately, cooler weather rounded out that first week of experiments, and the group, of course, was invited back again. Over the course of three week-long trials in People attaching baleen plates in a clamp to the moving bridge over a saltwater test tank at Ohmsett.September, December, and January, they were trying to tease out the potential impacts of oil and dispersants on whale baleen.

As a marine biologist with NOAA’s Office of Response and Restoration, Shigenaka’s job is to consider how oil spills might threaten marine life and advise the U.S. Coast Guard on this issue during a spill response.

But the last time scientists had examined how oil might affect whale baleen was in a handful of studies back in the 1980s. This research took place before the 1989 Exxon Valdez and 2010 Deepwater Horizon oil spills and predated numerous advances in scientific technique, technology, and understanding.

Thanks to a recent opportunity provided by the U.S. Bureau of Safety and Environmental Enforcement, which runs the Ohmsett facility, Shigenaka and a team of scientists, engineers, and oil spill experts have been able to revisit this question in the facility’s 2.6 million gallon saltwater tank.

The diverse team that made this study possible hails not just from NOAA but also Alaska’s North Slope Borough Department of Wildlife Management (Dr. Todd Sformo), Woods Hole Oceanographic Institution (Dr. Michael Moore and Tom Lanagan), Hampden-Sydney College (Dr. Alexander Werth), and Oil Spill Response Limited (Paul Schuler). In addition, NOAA’s Marine Mammal Health and Stranding Response Program provided substantial support for the project, including funding and regulatory expertise, and was coordinated by Dr. Teri Rowles.

Getting a Mouthful

To understand why this group is focused on baleen and how an oil spill might affect this particular part of a whale, you first need to understand what baleen is and how a whale uses it. Similar to fingernails and hooves, baleen is composed of the protein keratin, along with a few calcium salts, giving it a tough but pliable character.

A hand holds a ruler next to oiled baleen hanging from a clamp next to a man.

Made of the flexible substance keratin, baleen plates have tangles of “fringe hair” that act as nets to strain marine life from mouthfuls of ocean water. This study examined how oil and dispersants might affect the performance of baleen. (NOAA)

Twelve species of whales, including humpback and bowhead, have hundreds of long plates of baleen hanging from the top jaw, lined up like the teeth on a comb, which they use to filter feed. A whale’s tongue rubs against its baleen plates, fraying their inner edges and creating tangles of “fringe hair” that act like nets to catch tiny sea creatures as the whale strains massive gulps of ocean water back out through the baleen plates.

Baleen does vary somewhat between species of whales. Some might have longer or shorter baleen plates, for example, depending on what the whale eats. Bowhead whales, which are Arctic plankton-eaters, can have plates up to 13 feet long.

This study was, at least in part, inspired by scientists wondering what would happen to a bowhead whale if a mouthful of water brought not just lunch but also crude oil from an ill-fated tanker traversing its Arctic waters.

Would oil pass through a whale’s hundreds of baleen plates and coat their mats of fringe hairs? Would that oil make it more difficult for the whale to push huge volumes of water through the oily baleen, causing the whale to use more energy as it tried? Does that result change whether the oil is freshly spilled, or weathered with age, or dispersed with chemicals? Would dispersant make it easier for oil to reach a whale’s gut?

Using more energy to get food would mean the whales then would need to eat even more food to make up for the energy difference, creating a tiring cycle that could tax these gargantuan marine mammals.

Testing this hypothesis has been the objective of Shigenaka’s team. While it might sound simple, almost nothing about the project has been straightforward.

Challenges as Big as a Whale

One of the first challenges was tackled by the engineers at Woods Hole Oceanographic Institution. They were tasked with turning the mechanical features of Ohmsett’s giant saltwater tank into, essentially, a baleen whale’s mouth.

Woods Hole fabricated a special clamp and then worked with the Ohmsett engineering staff to attach it to a corresponding mount on the mechanical bridges that move back and forth over the giant tank. The clamp gripped the sections of baleen and allowed them to be held at different angles as they moved through the water. In addition, this custom clamp had a load cell, which was connected to a computer on the bridge. As the bridge moved the clamp and baleen at different speeds and angles through the water, the team could measure change in drag on the baleen via the load cell.

With the mechanical portion set up, the Ohmsett staff released oil into the test tank on the surface of the water, and the team watched expectantly how the bridges moved the baleen through the thin oil slick. It turned out to be a pretty inefficient way to get oil on baleen. “How might a whale deal with oil on the surface of the water?” asked Shigenaka. “If it’s feeding, it might scoop up a mouthful of water and oil and run it through the baleen.” But how could they simulate that experience?

They tried using paintbrushes to apply crude oil to the baleen, but that seemed to alter the character of the baleen too much, matting down the fringe hairs. After discussions with the Ohmsett engineering staff, the research team finally settled on dipping the baleen into a pool of floating oil that was contained by a floating ring. This set-up allowed a relatively heavy amount of oil to contact baleen in the water and would help the scientists calibrate their expectations about potential impacts.

Testing the Waters

Four black plumes of dispersed oil are released underwater onto long plates of baleen moving behind the applicator.

After mixing chemical dispersant with oil, the research team released plumes of it underwater in Ohmsett’s test tank as baleen samples moved through the water behind the applicator. Researchers also tested the effects of dispersant alone on baleen function. (NOAA)

In all, Shigenaka and his teammates ran 127 different trials across this experiment. They measured the drag values for baleen in a variety of combinations: through saltwater alone, with fresh oil, with weathered oil, with dispersed oil (pre-mixed and released underwater through a custom array designed and built by Ohmsett staff), and with chemical dispersant alone. They tested during temperate weather as well as lower temperature conditions, which clearly thickened the consistency of the oil. They conducted the tests using baleen from three different species of whales: bowhead, humpback, and right whale.

Following all the required regulations and with the proper permits, the bowhead baleen was donated by subsistence whalers from Barrow, Alaska. The baleen from other species came from whales that had stranded on beaches from locations outside of Alaska.

In addition to testing the potential changes in drag on the baleen, the team of researchers used an electric razor to shave off baleen fringe hairs as samples for chemical analysis to determine whether the oil or dispersant had any effects on baleen at the molecular level. They also determined how much oil, dispersed oil, and dispersant were retained on the baleen fringe hairs after the trials.

At this point, the team is analyzing the data from the experimental trials and plans to submit the results for publication in a scientific journal. NOAA is also beginning to create a guidance document on oil and cetaceans (whales and dolphins), which will incorporate the conclusions of this research.

While the scientific community has learned a lot about the apparent effects of oil on dolphins in the wake of the 2010Deepwater Horizon oil spill, there is very little information on large whales. The body of research on oil’s effects on baleen from the 1980s concluded that there were few and transient effects, but whether that conclusion holds up today remains to be seen.

“This is another piece of the puzzle,” said Shigenaka. “If we can distill response-relevant guidance that helps to mediate spill impacts to whales, then we will have been successful.”

Work was conducted under NOAA’s National Marine Fisheries Service Permits 17350 and 18786.

Marine Debris

Understanding the Problem

Marine Debris

Our ocean is under siege. From everyday trash like plastic bags, food wrappers and drink bottles, to larger items like car batteries, kitchen appliances and fishing nets, our debris is entering the sea at an alarming rate. Our ocean has become a dumping ground.

Marine debris is not only unsightly, it’s dangerous to sea life, hazardous to human health, and costly to our economies. Marine animals can become entangled in debris or mistake small particles of trash for food – often with fatal results. Divers, swimmers and beachgoers can be directly harmed by encounters with debris or its toxins. And, the costs of plastic debris to marine ecosystems are estimated at 13 billion dollars a year.

Join us and take action against marine debris.

Working Toward Solutions

Project AWARE fights for the prevention and reduction of marine debris. Through our Partnerships Against Trash, we work with governments, NGOs and businesses to affect change on a global scale. In order to achieve a long-term solution, we must influence policy at local, national and international levels and prevent trash from entering the ocean in the first place.

Global change is empowered by grassroots movement. We need you – ocean enthusiasts and the scuba diving community – to help by taking action in your local communities!

Through Dive Against Debris, Project AWARE supporters remove undersea litter collected while diving and report results. Trash removed during Dive Against Debris makes the ocean safer for marine life, and more importantly, information reported helps inform policy change. With your help, Project AWARE can use the information you report through Dive Against Debris to convince individuals, governments and businesses to act against marine debris.

Together, we can work towards a clean, healthy ocean planet. Dive Against Debristoday.

Understanding the Problem Our ocean is under siege. From everyday trash like plastic bags, food wrappers and drink bottles, to larger items like car batteries, kitchen appliances and fishing nets, our debris is entering the sea at an alarming rate. Our ocean has become a dumping ground.

Source: Marine Debris

Sharks in Peril

We are emptying the ocean of sharks. Thankfully, divers are some of sharks’ closest and most influential allies. Together, we are creating a powerful, collective voice to lead global grassroots change. You’ve helped us secure a stronger EU finning ban and bring about safeguards for highly traded shark and ray species under CITES.

Sharks in Peril

TAKE ACTION

Here’s why your actions to protect sharks matter:

Nearly one out of four shark and ray species is classified by the IUCN (International Union for Conservation of Nature) as Threatened with extinction and ray species are found to be at higher risks than sharks. That doesn’t even include almost half of all sharks and ray species whose population status cannot be assessed because of lack of information.

Why do we worry about shark populations? A healthy and abundant ocean depends on predators like sharks keeping ecosystems balanced. And living sharks fuel local economies in some places, like Palau where sharks bring in an estimated $18 million per year through dive tourism.

They may rule the ocean, but sharks are vulnerable. They grow slowly, produce few young, and, as such, are exceptionally susceptible to overexploitation.

Overfishing is driving sharks to the brink – with many populations down by 80 percent. Tens of millions are killed each year for their meat, fins, liver, and other products.

Bycatch– or catching sharks incidentally while fishing for other commercial species – poses a significant threat to sharks. At the same time, new markets for shark products are blurring the line between targeted and accidental catches.

Finning– Shark fins usually fetch a much higher price than shark meat, providing an economic incentive for the wasteful and indefensible practice of “finning” (removing shark fins and discarding the often still alive shark at sea).  Finning is often associated with shark overfishing, especially as keeping only the fins allows fishermen to kill many more sharks in a trip than if they were required to bring back the entire animal.

Shark fishing continues largely unregulated in most of the world’s ocean. Yet the future of sharks hinges on holding shark fishing and trade to sustainable levels. The best way to ensure an end to finning is to require that sharks are landed with their fins still “naturally” attached. Fishing limits must be guided by science and reflect a precautionary approach while trade must be controlled and monitored. We must also invest in shark research and catch reporting, and protect vital shark habitats. We can lead change locally through innovative, results orientated action on the ground. And last, but most definitely not least, if you choose to eat seafood, refrain from a purchase unless you can be certain that it’s coming from a sustainable source.

Source: Sharks in Peril

Mares Mask Star

Mares Mask Star

Mask Star

Mask created specifically for spearfishing and freediving, offering a better field of vision paired with the smallest possible volume, thanks to the angled lenses and the extremely reduced eye-lens distance. Utilizing new types of silicone help eliminate undesirable fogging, and the dual-button ergonomic buckles make it even easier to adjust the strap. The Star is manufactured with a mono-silicone skirt.

Mask Mares i3

Mares Mask I3

Mask i3

An unparalled field of vision

• Tri-comfort skirt
• X-Shaped strap
• Quick-adjusting buckles

i3 scuba mask combines the advantages of the Tri-comfort technology with a huge field of vision. In addition to the wide central glass, smaller panels on each side guarantee peripheral vision that will blow you away. The ergonomic 2-button buckles allow for easy and secure adjustment of the strap even when diving with thick gloves.

Why PADI Divemasters Rock | Sport Diver

PADI Divemasters Rock

 They’re always there when you need them. See who’s giving a shoutout to their favorite PADI Divemaster.

Even for those who didn’t struggle, a Divemaster may have helped render your dives safer by ensuring your gear was donned correctly and buddy checks were properly conducted. For example, PADI Diver Patrick Loerbach wrote to PADI about the Divemaster who assisted him during his PADI Advanced Open Water Diver course at PADI Five Star Career Development Center Couples Resort in St. Ann, Jamaica, last summer.

“Divemaster Collin Whyte was always happy, chatty — and busy! He did such a great job of keeping us laughing that it was several dives before I came to see how organized and detailed he was in preparing the equipment, knowing the skills and experience of each diver, and making sure everyone was safe and comfortable. He was a stickler for making sure ascents and descents were done properly, and he had a knack for spotting cool things that we missed. Having Collin there always made for a better dive.”

First-Rate Boat Mates

Going on a boat dive? Don’t forget to bring along your favorite PADI Divemaster.

A Divemaster is often the person on the boat who assists you in getting ready to dive, from helping you set up your gear to making sure your air is on before you take that giant stride into the water. When you were new, it was most likely a Divemaster who helped you with your predive jitters by telling you funny stories. Once underwater, he led you to the best places to see the coolest creatures, helping you forget your nerves. Or, perhaps he trailed the dive group, ready to assist if needed, while ensuring the group stayed together and everyone returned safely back to the boat. Better still, at the end of your dive, it was probably the Divemaster who eased your passage out of the water by taking your fins and any other equipment you may have needed to hand off before climbing the ladder.

Are You Hero Material?

Aside from being heroically helpful, PADI Divemasters get to do some cool stuff — like live the dive life every day. They can travel the world, seeking employment at more than 6,200 PADI Dive Centers and Resorts; leading Discover Local Diving excursions, snorkeling tours and select PADI Adventure Dives; and teaching PADI ReActivate, PADI’s new scuba-refresher program. Divemasters can also apply to become Discover Scuba Diving leaders, Underwater Photographer instructors or Emergency Oxygen Provider instructors.

If you think you’d like to become a PADI Divemaster, visit padi.com for prerequisites for the course. If you meet the requirements, you can start your Divemaster program today with the PADI Divemaster Online course, or by enrolling at your local PADI Dive Center or Resort.

Source: Why PADI Divemasters Rock | Sport Diver

Attempting to Answer One Question Over and Over Again: Where Will the Oil Go?

 Where Will the Oil Go?

A heavy band of oil is visible on the surface of the Gulf of Mexico.

A heavy band of oil is visible on the surface of the Gulf of Mexico during an overflight of the Deepwater Horizon oil spill on May 12, 2010. Predicting where oil like this will travel depends on variable factors including wind and currents. (NOAA)

 

Overflight surveys from airplanes or helicopters help responders find oil slicks as they move and break up across a potentially wide expanse of water. They give snapshots of where the oil is located and how it is behaving at a specific date and time, which NOAA uses to compare to our oceanographic models. (U.S. Coast Guard)

 

Two people in a helicopter over water.

The Deepwater Horizon Oil Spill: Five Years Later

This is the first in a series of stories over the coming weeks looking at various topics related to the response, the Natural Resource Damage Assessment science, restoration efforts, and the future of the Gulf of Mexico.

MARCH 30, 2015 — Oil spills raise all sorts of scientific questions, andNOAA’s job is to help answer them.

We have a saying that each oil spill is unique, but there is one question we get after almost every spill: Where will the oil go? One of our primary scientific products during a spill is a trajectory forecast, which often takes the form of a map showing where the oil is likely to travel and which shorelines and other environmentally or culturally sensitive areas might be at risk.

Oil spill responders need to know this information to know which shorelines to protect with containment boom, or where to stage cleanup equipment, or which areas should be closed to fishing or boating during a spill.

To help predict the movement of oil, wedeveloped the computer model GNOME to forecast the complex interactions among currents, winds, and other physical processes affecting oil’s movement in the ocean. We update this model daily with information gathered from field observations, such as those from trained observers tasked with flying over a spill to verify its often-changing location, and new forecasts for ocean currents and winds.

Modeling a Moving Target

One of the biggest challenges we’ve faced in trying to answer this question was, not surprisingly, the 2010 Deepwater Horizon oil spill. Because of the continual release of oil—tens of thousands of barrels of oil each day—over nearly three months, we had to prepare hundreds of forecasts as more oil entered the Gulf of Mexico each day, was moved by ocean currents and winds, and was weathered, or physically, biologically, or chemically changed, by the environment and response efforts.

A typical forecast includes modeling the outlook of the oil’s spread over the next 24, 48, and 72 hours. This task began with the first trajectory our oceanographers issued early in the morning April 21, 2010 after being notified of the accident, and continued for the next 107 days in a row. (You canaccess all of the forecasts from this spill online.)

Once spilled into the marine environment, oil begins to move and spread surprisingly quickly but not necessarily in a straight line. In the open ocean, winds and currents can easily move oil 20 miles or more per day, and in the presence of strong ocean currents such as the Gulf Stream, oil and other drifting materials can travel more than 100 miles per day. Closer to the coast, tidal currents also can move and spread oil across coastal waters.

While the Deepwater Horizon drilling rig and wellhead were located only 50 miles offshore of Louisiana, it took several weeks for the slick to reach shore as shifting winds and meandering currents slowly moved the oil.

A Spill Playing on Loop

Over the duration of a typical spill, we’ll revise and reissue our forecast maps on a daily basis. These maps include our best prediction of where the oil might go and the regions of highest oil coverage, as well as what is known as a “confidence boundary.” This is a line encircling not just our best predictions for oil coverage but also a broader area on the map reflecting the full possible range in our forecasts [PDF].

Our oceanographers include this confidence boundary on the forecast maps to indicate that there is a chance that oil could be located anywhere inside its borders, depending on actual conditions for wind, weather, and currents.

Why is there a range of possible locations in the oil forecasts? Well, the movement of oil is very sensitive to ocean currents and wind, and predictions of oil movement rely on accurate predictions of the currents and wind at the spill site. In addition, sometimes the information we put into the model is based on an incomplete picture of a spill. Much of the time, the immense size of the Deepwater Horizon spill on the ocean surface meant that observations from specialists flying over the spill and even satellites couldn’t capture the full picture of where all the oil was each day.

Left, woman pointing and explaining maps on desk to man. Right, dark brown and red oil on ocean surface with two response ships.

Forecasters attempt to assess all the possible outcomes for a given scenario, estimate the likelihood of the different possibilities, and ultimately communicate risks to the decision makers. Left, NOAA oceanographer Amy MacFadyen explains how NOAA creates oil trajectory maps to then-Department of Commerce Secretary Gary Locke. Photo at right taken on May 27, 2010 near an ocean convergence zone shows dark brown and red emulsified oil from the Deepwater Horizon oil spill. The movement of oil is very sensitive to ocean currents and wind, and the size of this spill further complicated our attempts to model where the oil would go. (NOAA)

Our inevitably inexact knowledge of the many factors informing the trajectory model introduces a certain level of expected variation in its predictions, which is the situation with many models. Forecasters attempt to assess all the possible outcomes for a given scenario, estimate the likelihood of the different possibilities, and ultimately communicate risks to the decision makers.

In the case of the Deepwater Horizon oil spill, we had the added complexity of a spill that spanned many different regions—from the deep Gulf of Mexico, where ocean circulation is dominated by the swift Loop Current, to the continental shelf and nearshore area where ocean circulation is influenced by freshwater flowing from the Mississippi River.  And let’s not forget that several tropical storms andhurricanes crossed the Gulf that summer [PDF].

A big concern was that if oil got into the main loop current, it could be transported to the Florida Keys, Cuba, the Bahamas, or up the eastern coast of the United States. Fortunately (for the Florida Keys) a giant eddy formed in the Gulf of Mexico in June 2010 (nicknamed Eddy Franklin after Benjamin Franklin, who did some of the early research on the Gulf Stream). This “Eddy Franklin” created a giant circular water current that kept the oil largely contained in the Gulf of Mexico.

Some of the NOAA forecast team likened our efforts that spring and summer to the movie Groundhog Day, in which the main character is forced to relive the same day over and over again. For our team, every day involved modeling the same oil spill again and again, but with constantly changing results.

Thinking back on that intense forecasting effort brings back memories packed with emotion—and exhaustion. But mostly, we recall with pride the important role our forecast team in Seattle played in answering the question “where will the oil go?”

By Doug Helton, NOAA’s Office of Response and Restoration Incident Operations Coordinator.

Source: Attempting to Answer One Question Over and Over Again: Where Will the Oil Go? | response.restoration.noaa.gov

5 Facts About Successful Marine Protected Areas

Not all MPAs are created equal. Learn the features that help ensure environmental protection works.

 

Marine protected areas (MPA) are protected areas of seas, oceans or large lakes. MPAs restrict human activity for a conservation purpose, typically to protect natural or cultural resources.” – Wikipedia

———

 

It’s not enough to merely designate a marine protected area — a few key features are essential to its success.

Marine protected areas (MPAs) help reduce stress on marine ecosystems and protect spawning and nursery areas, but not only animals benefit — people benefit from the storm protection provided by habitats such as barrier islands, coral reefs, and wetlands, and gain economically from tourism and fishing.

More than 1,600 MPAs in the United States protect about 41 percent of marine waters in some capacity, 3 percent within no-take protected areas.

The Convention on Biological Diversity — a coalition of 168 countries — set a goal of protecting 10 percent of ocean waters by 2020, but scientists say that figure needs to be closer to 25 or 30 percent. Either way, protecting a certain percentage of water isn’t enough — it must be the right percentage.

“Oceans are not homogeneous, and not all MPAs are created equal,” says Rodolphe Devillers, Ph.D., a researcher and professor at the Memorial University of Newfoundland in Canada. “Protecting 1 percent one place does not equal protecting 1 percent somewhere else.” When Devillers and other researchers examined protected areas around the globe, they found that most MPA sites were chosen to minimize costs and conflict and, as a result, make almost no real contribution to conservation or protection of species or habitats. “MPAs are management tools to protect vulnerable marine life from human activities. Typically, areas most used by humans tend to be the ones that need the most protection — but they also are the hardest to sell politically.”

Overall, prohibiting extractive activities dramatically boosts MPA success. Yet only 1 percent of the world’s oceans and less than 3 percent of the U.S. MPA area is currently designated no-take.

In no-take reserves worldwide, research documented an average increase of 446 percent in total marine life. Density — or number of plants and animals in a given area — increased an average of 166 percent, and the number of species present increased an average of 21 percent.

No-take requires enforcement, another key feature of successful MPAs. This presents particular challenges in isolated locations, ironically another key characteristic of successful MPAs.

To overcome this challenge, the Pew Charitable Trusts in Washington, D.C., and Satellite Applications Catapult in the United Kingdom created a virtual-monitoring system, which so far monitors 10 locations worldwide.

Other features of successful MPAs include an age of 10 years or older and a size larger than 100 square kilometers.

“People want to believe that MPAs are like a magic wand, that with one fell swoop you can achieve bold and aggressive conservation outcomes,” says Doug Rader, chief oceans scientist at the Environmental Defense Fund. “That unfortunately is not the case. But where MPAs are designed to achieve or contribute to a conservation goal, and where a fair and science-based need is recognized, I don’t think there is a case that has been unsuccessful.”

Behind Every Successful MPA…
Tortugas North Ecological Reserve, Florida
Established in 2001 as a no-take reserve.

» Three commercially important fish species increased in abundance/size within three years.
» Responses were stronger in the reserve than the fished MPA for two of the three species, and stronger for all three species in fully fished areas.
» No financial loss for commercial or recreational fisheries, as well as higher coral coverage in the reserve than the MPA and unprotected sites.

Kisite Mpunguti Marine National Park, Kenya
Established in 1973; fishing prohibited in the 1990s.

» Fish biomass 11.6 times higher inside the reserve than in fully fished areas, and 2.8 times greater than in a fished MPA.
» Greater biodiversity and better protection for branching corals than a fished MPA.
» Higher fish diversity, approximately 10 more fish species per area sampled than in a fished MPA.

Cabo Pulmo National Marine Park, Baja California, Mexico
Created in the Gulf of California in 1995, no-take enforced by locals. Scientific surveys in 1999 and 2009 found no change in other Gulf of California MPAs, while at Cabo Pulmo:

» Predator biomass increased more than 1,000 percent.
» Total fish biomass increased 463 percent.
» Density of fish on the reef — 1.72 tons per acre — is some of the highest recorded anywhere in the world.

Five Easy Pieces
Successful marine protected areas around the world have five features in common, according to an analysis of 87 MPAs:

  1. No-take zone

  2. Effective enforcement

  3. Age greater than 10 years

  4. Size larger than 100 square kilometers

  5. Isolation

————————————————–

Source: 5 Facts About Successful Marine Protected Areas | Sport Diver

Gear / How to Maintain Your Snorkel / Dive Mask

Gear Basic – Mask Maintenance

Critical scuba diving gear requires annual inspection and service by a qualified technician, but even dive masks — your window to the underwater world — need some special TLC. Here’s our guide to keeping your mask in tiptop shape in 5 easy steps.

Predive
1. If you haven’t replaced your mask strap with a stretchy fabric one, stretch out the strap to look for fine cracks. If you do find any, immediately replace the strap.
2. Examine the silicone of your mask skirt. The most common failure area on a mask is the feather-edged seal on the skirt. This can become imperfect or irregular in shape with time and heavy use, and that irregularity can create leaks.
3. Check all the buckles, which can crack, split or become clogged with debris that can interfere with how they function. Then check the frame of your mask for cracking, chips or other obvious signs of wear, especially in the areas immediately adjacent to the glass lens.

Postdive
1. To avoid mildew growth, rinse your mask in warm, fresh water and allow it to drip dry completely before packing it away.
2. Pack the mask loosely, so nothing distorts the mask skirt. Leaving it squashed into a weird position for a long period of time will cause it to take on an unnatural shape.

Source: Gear / Masks | Sport Diver

15 Tips for Avoiding Seasickness | Sport Diver

Why do scuba divers get motion sickness? It’s because your feet are telling your brain that you’re on solid ground, but you’re really rocking and rolling on the high seas. Your brain gets confused; you get sick.

Anyone who’s ever tried to keep their cookies settled while riding on a turbulent sea knows Kermit speaks the truth: It’s not easy being green. But it’s the rare ocean traveler who’s never turned the sickly shade. Nearly 100 percent of boat passengers will experience some level of seasickness on rough waters, says the Centers for Disease Control, and some of us seem to get green around the gills 100 percent of the time, regardless of the motion of the ocean.

If you’re one of the unlucky 100 percent, you can blame your parents, as it’s likely genetic. Fortunately, you don’t have to abandon ship. Motion sickness and the many factors that affect it can be largely controlled. Here’s how:

• Look up and out. At the most basic level, seasickness is a matter of sensory mismatch. When you’re sitting on a boat that’s rolling on the water, the body, inner ear and eyes all send different signals to the brain. Your brain gets confused and you get queasy. Stop tinkering with your computer and equipment and look out on the horizon, which usually appears very stable. Your peripheral vision will see the ocean swells that you feel. The whole picture will make more sense to your brain. Likewise brace yourself at the center of the boat where the rocking and rolling is less amplified.

• Tame your tummy. Have a Coke. It contains phosphoric acid and sugars, the same ingredients you’ll find in Emetrol, an over-the-counter anti-nausea drug.

• Apply some pressure. For centuries, traditional Chinese medicine has included acupuncture or acupressure on the inside of the wrist, at a spot called P6, as a way to suppress the nausea associated with motion sickness. You can find simple pressure bands like Sea-Band and Acuband at your local drug store. More sophisticated, battery-operated bands like Reliefband, which delivers an electrical pulse instead of pressure, are out there as well.

• Pop a pill. Meds like Dramamine, Bonine and even antihistamines like Benadryl can help quell motion sickness by blocking sensory-nerve transmission, which is a fancy way of saying they interrupt the flow of information from various places like the middle ear (involved in balance) to the brain. They can cause drowsiness and fuzzy thinking, however, so definitely take them for a test drive before diving on them. All the pills are about the same in effectiveness and side effects. But if one of them—Dramamine, Bonine, Marazine, etc.—seems to work better for you than the others, stick with it. The placebo effect is very strong with seasickness. And start taking the medication early: Pills are better prevention than treatment. After you feel queasy, it may be too late for pills to help, so start 12 to 24 hours before going to sea. This builds up a level of the drug in your body.

• Try wearing an anti-nausea band. Some people like “Sea Bands.” They are bracelets with dots that purportedly touch acupressure points on your wrist. They have never been proven effective, but some people swear by them.

• Wear a patch. Scopolamine, a drug that reduces the activity of nerve fibers in your inner ear, is hands down the most successful commercial seasickness medication on the market. You get a steady dose by wearing a medicated patch like the Transderm Scop patch behind your ear. Just be mindful of following directions and watching for side effects like dry mouth and blurred vision.

• Don’t try to read. Focusing your eyes on an apparently stationary target makes them even more convinced that your middle ears are wrong.

• Close your eyes. You may have to go below or find a place to stretch out and lie down, in which case you should close your eyes so they aren’t giving a no-motion message to your brain.

• Be clean and sober. Even a mild hangover can easily degenerate into seasickness, besides increasing various diving risks. Likewise, fatigue predisposes you to seasickness.

• Eat something. Opinions vary on this one, but most people feel better with a little bland food on their stomachs. Bread, bagels, pancakes, etc. are better than eggs and bacon. Coffee and orange juice are acidic and may irritate your stomach. Eat a little, not a lot.

• Relax. Anxiety contributes to seasickness. Those who are frightened by the ocean and the movement of the boat, or anxious about the diving later in the day, are more likely to become seasick.

• Watch for symptoms. Early signs include chills, headache and frequent burping. Now is the time to go on deck, or move to the lee rail if you’re already there.

• Plan ahead. All of these techniques work best if you apply them before you need them — to prevent getting motion sick in the first place. So take precautions early.

I’M SEASICK: NOW WHAT?

• If you feel the urge, let it rip. You’ll feel better almost immediately. Prolonging the inevitable only prolongs the pain.

• Don’t use a toilet. Or, God help us, a trash can. Go to the rail on the lee (downwind) side or use a bucket if one is designated. If you feel the urge coming, ask a crew member where to go. He or she will know the best place. Don’t be embarrassed; you’re not the first.

After a few hours, most people feel better. For some it takes a day or two. Almost everyone gets over seasickness within three days.

Source: 15 Tips for Avoiding Seasickness | Sport Diver

I3 Sunrise – Masks – Mares

NEW PRODUCT Winter 2014-2015

I3 Sunrise – Masks – Mares.

sunrise blue

I3 Sunrise

An unparalled field of vision

• Tri-comfort skirt
• X-Shaped strap
• Quick-adjusting buckles

The i3 scuba mask combines the advantages of the Tri-comfort technology with a huge field of vision. In addition to the wide central glass, smaller panels on each side guarantee peripheral vision that will blow you away. The ergonomic 2-button buckles allow for easy and secure adjustment of the strap even when diving with thick gloves.

Intova Sports HD Takes on the GoPro Hero 3

Sport HD II

Waterproof HD Video Sports Camera

SPECIFICATIONS
Video Resolution 1080p HD (30fps), 720p HD, 720p HD (60fps), WVGA1 (60fps), WVGA (30fps), VGA(30fps)
Video Codec H.264
Video File Type MP4
Photo Resolution 12MP, 8MP, 5MP, 3MP
Photo File Type JPEG
Digital zoom all modes except 1080p
Lens 140 degree wide angle, aperture f2.4
Depth Rating Waterproof to 200 ft / 60m
Important: to maintain waterproof seal, be sure to clean and remove debris from O-rings and lightly apply silicone grease before use.
Monitor 1.5″ TFT LCD
Power Built in 1400 mAh Li-ion rechargeable battery
Battery Life Recording time 3 hours @ 1080p with LCD off
Video/still image flip Flips image over when camera is held upside down.
Scene mode Auto, Night Scene, Sports, Landscape, Sunset, Sand-Snow, Spotlight, Diving,
Image Effects Art, Sepia, Negative, Black and  White, Vivid
Memory Support micro SD card up to 32 GB, Class 6 or 10 recommended.
Ports TV Mini out, Micro USB
Flotation Camera Floats
Housing Polycarbonate with UV injection, Patented Unibody design
Controls Full function control buttons
Dimensions (7 x 8.4 x 6) cm / (2.8 x 3.3 x 2.4) inches
Weight 179g / 6.3 oz
Model# SP1 N

Diving Photography Wall

 

Click Here for the  Diving Photography Wall

IMG_1034.1

Some of the greatest pictures from Culebra’s Snorkelers, Divers, Kayakers, and Fishers

Diving Tip  –

Diving is a breathtaking means of exploring all that Mother Nature has to offer, in Culebra,  from her underwater wonderland.  The most important thing is to just relax. There is no need to hurry up.  Learning techniques for diving is about moving in the water without feeling breathless, fatigue or cramps which is the key to maximizing the enjoyment of your Culebra diving adventure.  Diving is an excellent way to view tropical fish in warm water to explore a coral reef. Both beginners and more experienced swimmers can learn to dive, as it doesn’t require much technical ability.  Relax and gaze down into an enchanting underwater realm.

%d bloggers like this: