Archive for March 2016

For the First Time in Decades, Scientists Examine How Oil Spills Might Affect Baleen Whales

Several days of unseasonably warm weather in late September had Gary Shigenaka starting to wonder how much longer he and his colleagues would be welcome at Ohmsett, a national oil spill research facility in New Jersey.

March 16, 2016 Leave a comment

A North Atlantic right whale's mouth is visible at the ocean surface.

NOAA scientists and partners recently collaborated to examine how oil and dispersants might affect the function of baleen in humpback, bowhead, and right whales (pictured). Hundreds of baleen plates hang from these whales’ top jaws and allow them to filter food from the water. (Credit: Georgia Department of Natural Resources, Permit 15488)

They were working with whale baleen, and although the gum tissue anchoring their baleen samples had been preserved with formalin, the balmy fall weather was taking a toll. As a result, things were starting to smell a little rank.

Fortunately, cooler weather rounded out that first week of experiments, and the group, of course, was invited back again. Over the course of three week-long trials in People attaching baleen plates in a clamp to the moving bridge over a saltwater test tank at Ohmsett.September, December, and January, they were trying to tease out the potential impacts of oil and dispersants on whale baleen.

As a marine biologist with NOAA’s Office of Response and Restoration, Shigenaka’s job is to consider how oil spills might threaten marine life and advise the U.S. Coast Guard on this issue during a spill response.

But the last time scientists had examined how oil might affect whale baleen was in a handful of studies back in the 1980s. This research took place before the 1989 Exxon Valdez and 2010 Deepwater Horizon oil spills and predated numerous advances in scientific technique, technology, and understanding.

Thanks to a recent opportunity provided by the U.S. Bureau of Safety and Environmental Enforcement, which runs the Ohmsett facility, Shigenaka and a team of scientists, engineers, and oil spill experts have been able to revisit this question in the facility’s 2.6 million gallon saltwater tank.

The diverse team that made this study possible hails not just from NOAA but also Alaska’s North Slope Borough Department of Wildlife Management (Dr. Todd Sformo), Woods Hole Oceanographic Institution (Dr. Michael Moore and Tom Lanagan), Hampden-Sydney College (Dr. Alexander Werth), and Oil Spill Response Limited (Paul Schuler). In addition, NOAA’s Marine Mammal Health and Stranding Response Program provided substantial support for the project, including funding and regulatory expertise, and was coordinated by Dr. Teri Rowles.

Getting a Mouthful

To understand why this group is focused on baleen and how an oil spill might affect this particular part of a whale, you first need to understand what baleen is and how a whale uses it. Similar to fingernails and hooves, baleen is composed of the protein keratin, along with a few calcium salts, giving it a tough but pliable character.

A hand holds a ruler next to oiled baleen hanging from a clamp next to a man.

Made of the flexible substance keratin, baleen plates have tangles of “fringe hair” that act as nets to strain marine life from mouthfuls of ocean water. This study examined how oil and dispersants might affect the performance of baleen. (NOAA)

Twelve species of whales, including humpback and bowhead, have hundreds of long plates of baleen hanging from the top jaw, lined up like the teeth on a comb, which they use to filter feed. A whale’s tongue rubs against its baleen plates, fraying their inner edges and creating tangles of “fringe hair” that act like nets to catch tiny sea creatures as the whale strains massive gulps of ocean water back out through the baleen plates.

Baleen does vary somewhat between species of whales. Some might have longer or shorter baleen plates, for example, depending on what the whale eats. Bowhead whales, which are Arctic plankton-eaters, can have plates up to 13 feet long.

This study was, at least in part, inspired by scientists wondering what would happen to a bowhead whale if a mouthful of water brought not just lunch but also crude oil from an ill-fated tanker traversing its Arctic waters.

Would oil pass through a whale’s hundreds of baleen plates and coat their mats of fringe hairs? Would that oil make it more difficult for the whale to push huge volumes of water through the oily baleen, causing the whale to use more energy as it tried? Does that result change whether the oil is freshly spilled, or weathered with age, or dispersed with chemicals? Would dispersant make it easier for oil to reach a whale’s gut?

Using more energy to get food would mean the whales then would need to eat even more food to make up for the energy difference, creating a tiring cycle that could tax these gargantuan marine mammals.

Testing this hypothesis has been the objective of Shigenaka’s team. While it might sound simple, almost nothing about the project has been straightforward.

Challenges as Big as a Whale

One of the first challenges was tackled by the engineers at Woods Hole Oceanographic Institution. They were tasked with turning the mechanical features of Ohmsett’s giant saltwater tank into, essentially, a baleen whale’s mouth.

Woods Hole fabricated a special clamp and then worked with the Ohmsett engineering staff to attach it to a corresponding mount on the mechanical bridges that move back and forth over the giant tank. The clamp gripped the sections of baleen and allowed them to be held at different angles as they moved through the water. In addition, this custom clamp had a load cell, which was connected to a computer on the bridge. As the bridge moved the clamp and baleen at different speeds and angles through the water, the team could measure change in drag on the baleen via the load cell.

With the mechanical portion set up, the Ohmsett staff released oil into the test tank on the surface of the water, and the team watched expectantly how the bridges moved the baleen through the thin oil slick. It turned out to be a pretty inefficient way to get oil on baleen. “How might a whale deal with oil on the surface of the water?” asked Shigenaka. “If it’s feeding, it might scoop up a mouthful of water and oil and run it through the baleen.” But how could they simulate that experience?

They tried using paintbrushes to apply crude oil to the baleen, but that seemed to alter the character of the baleen too much, matting down the fringe hairs. After discussions with the Ohmsett engineering staff, the research team finally settled on dipping the baleen into a pool of floating oil that was contained by a floating ring. This set-up allowed a relatively heavy amount of oil to contact baleen in the water and would help the scientists calibrate their expectations about potential impacts.

Testing the Waters

Four black plumes of dispersed oil are released underwater onto long plates of baleen moving behind the applicator.

After mixing chemical dispersant with oil, the research team released plumes of it underwater in Ohmsett’s test tank as baleen samples moved through the water behind the applicator. Researchers also tested the effects of dispersant alone on baleen function. (NOAA)

In all, Shigenaka and his teammates ran 127 different trials across this experiment. They measured the drag values for baleen in a variety of combinations: through saltwater alone, with fresh oil, with weathered oil, with dispersed oil (pre-mixed and released underwater through a custom array designed and built by Ohmsett staff), and with chemical dispersant alone. They tested during temperate weather as well as lower temperature conditions, which clearly thickened the consistency of the oil. They conducted the tests using baleen from three different species of whales: bowhead, humpback, and right whale.

Following all the required regulations and with the proper permits, the bowhead baleen was donated by subsistence whalers from Barrow, Alaska. The baleen from other species came from whales that had stranded on beaches from locations outside of Alaska.

In addition to testing the potential changes in drag on the baleen, the team of researchers used an electric razor to shave off baleen fringe hairs as samples for chemical analysis to determine whether the oil or dispersant had any effects on baleen at the molecular level. They also determined how much oil, dispersed oil, and dispersant were retained on the baleen fringe hairs after the trials.

At this point, the team is analyzing the data from the experimental trials and plans to submit the results for publication in a scientific journal. NOAA is also beginning to create a guidance document on oil and cetaceans (whales and dolphins), which will incorporate the conclusions of this research.

While the scientific community has learned a lot about the apparent effects of oil on dolphins in the wake of the 2010Deepwater Horizon oil spill, there is very little information on large whales. The body of research on oil’s effects on baleen from the 1980s concluded that there were few and transient effects, but whether that conclusion holds up today remains to be seen.

“This is another piece of the puzzle,” said Shigenaka. “If we can distill response-relevant guidance that helps to mediate spill impacts to whales, then we will have been successful.”

Work was conducted under NOAA’s National Marine Fisheries Service Permits 17350 and 18786.

NOAA Scientist Helps Make Mapping Vital Seagrass Habitat Easier and More Accurate 

Shoal grass seagrass on a sandy ocean floor.

Seagrass beds serve as important habitat for a variety of marine life, and understanding their growth patterns better can help fisheries management and restoration efforts. (NOAA)

MARCH 3, 2016 — Amy Uhrin was sensing a challenge ahead of her.

As a NOAA scientist working on her PhD, she was studying the way seagrasses grow in different patterns along the coast, and she knew that these underwater plants don’t always create lush, unbroken lawns beneath the water’s surface.

Where she was working, off the North Carolina coast near the Outer Banks, things like the churning motion of waves and the speed of tides can cause seagrass beds to grow in patchy formations.

Clusters of bigger patches of seagrass here, some clusters of smaller patches over there. Round patches here, elongated patches over there.

Uhrin wanted to be able to look at aerial images showing large swaths of seagrass habitat and measure how much was actually seagrass, rather than bare sand on the bottom of the estuary. Unfortunately, traditional methods for doing this were tedious and tended to produce rather rough estimates. These involved viewing high-resolution aerial photographs, taken from fixed-wing planes, on a computer monitor and having a person digitally draw lines around the approximate edges of seagrass beds.

While that can be fairly accurate for continuous seagrass beds, it becomes more problematic for areas with lots of small patches of seagrass included inside a single boundary. For the patchy seagrass beds Uhrin was interested in, these visual methods tended to overestimate the actual area of seagrass by 70% to more than 1,500%. There had to be a better way.

Seeing the Light

Patches of seagrass beds of different sizes visible from the air.

Due to local environmental conditions, some coastal areas are more likely to produce patchy patterns in seagrass, rather than large beds with continuous cover. (NOAA)

At the time, Uhrin was taking a class on remote sensing technology, which uses airborne—or, in the case of satellites, space-borne—sensors to gather information about the Earth’s surface (includinginformation about oil spills). She knew that the imagery gathered from satellites (i.e. Landsat) is usually not at a fine enough resolution to view the details of the seagrass beds she was studying. Each pixel on Landsat images is 30 meters by 30 meters, while the aerial photography gathered from low-flying planes often delivered resolution of less than a meter (a little over three feet).

Uhrin wondered if she could apply to the aerial photographs some of the semi-automated classification tools from imagery visualization and analysis programs which are typically used with satellite imagery. She decided to give it a try.

First, she obtained aerial photographs taken of six sites in the shallow coastal waters of North Carolina’s Albemarle-Pamlico Estuary System. Using a GIS program, she drew boundaries (called “polygons”) around groups of seagrass patches to the best of her ability but in the usual fashion, which includes a lot of unvegetated seabed interspersed among seagrass patches.

Six aerial photographs of seagrass habitat off the North Carolina coast, with yellow boundary lines drawn around general areas of seagrass habitat.

Aerial photographs show varying patterns of seagrass growth at six study sites off the North Carolina coast. The yellow line shows the digitally drawn boundaries around seagrass and how much of that area is unvegetated for patchy seagrass habitat. (North Carolina Department of Transportation)

Next, Uhrin isolated those polygons of seagrass beds and deleted everything else in each image except the polygon. This created a smaller, easier-to-scan area for the imagery visualization program to analyze. Then, she “trained” the program to recognize what was seagrass vs. sand, based on spectral information available in the aerial photographs.

Though limited compared to what is available from satellite sensors, aerial photographs contain red, blue, and green wavelengths of light in the visible spectrum. Because plants absorb red and blue light and reflect green light (giving them their characteristic green appearance), Uhrin could train the computer program to classify as seagrass the patches where green light was reflected.

Classify in the Sky

Amy Uhrin stands in shallow water documenting data about seagrass inside a square frame of PVC pipe.

NOAA scientist Amy Uhrin found a more accurate and efficient approach to measuring how much area was actually seagrass, rather than bare sand, in aerial images of coastal North Carolina. (NOAA)

To Uhrin’s excitement, the technique worked well, allowing her to accurately identify and map smaller patches of seagrass and export those maps to another computer program where she could precisely measure the distance between patches and determine the size, number, and orientation of seagrass patches in a given area.

“This now allows you to calculate how much of the polygon is actually seagrass vegetation,” said Uhrin, “which is good for fisheries management.”

The young of many commercially important species, such as blue crabs, clams, and flounder, live in seagrass beds and actively use the plants. Young scallops, for example, cling to the blades of seagrass before sliding off and burrowing into the sediment as adults.

In addition, being able to better characterize the patterns of seagrass habitat could come in handy during coastal restoration planning and assessment. Due to local environmental conditions, some areas are more likely to produce patchy patterns in seagrass. As a result, efforts to restore seagrass habitat should aim for restoring not just cover but also the original spatial arrangement of the beds.

And, as Uhrin noted, having this information can “help address seagrass resilience in future climate change scenarios and altered hurricane regimes, as patchy seagrass areas are known to be more susceptible to storms than continuous meadows.”

The results of this study, which was done in concert with a colleague at the University of Wisconsin-Madison, have been published in the journal Estuarine, Coastal and Shelf Science.

Source: NOAA Scientist Helps Make Mapping Vital Seagrass Habitat Easier and More Accurate | response.restoration.noaa.gov

Sharks and Rays Without Borders

Sharks and Rays Without Borders

Although several countries have protections for sharks and rays in place, many species travel great distances, often crossing national boundaries. Their migratory routes are determined by nature, not by the borders we’ve drawn. International cooperation is vital to ensuring the survival of these exceptionally vulnerable migratory species. The Convention on Migratory Species (CMS) – a global wildlife treaty with 120 Parties — is uniquely suited to facilitate such action.

TAKE ACTION

In November 2014 in Quito, Ecuador, CMS Parties (member countries) from all over the world debated and decided on an unprecedented number of proposals that could greatly improve the outlook for 21 species of imperiled sharks and rays. Project AWARE was there to represent the voice of the dive community and to work with partner NGOs to urge the CMS Parties to commit to regional protections for the proposed shark and ray species. Such actions bring responsibilities for member countries to work nationally and regionally to safeguard listed species and ensure the health of their habitats throughout migratory pathways.

 Project AWARE CMS campaign #SharksWithoutBorders

Send a letter – Our letter campaign direct to delegates is now closed. Thank you to everyone involved. 28,804 letters were delivered to decision-makers urging them to support the shark and ray proposals.

Thunderclap – On 4th November, 632 people with a social media reach of almost 550k sent a loud unified message #SharksWithoutBorders.

Your support made a difference for:

  • All five sawfishes, nine devil rays, and the reef manta – proposed for CMS Appendix I & II. Appendix I is reserved for migratory species that are threatened with extinction and brings an obligation for CMS Parties to strictly protect these animals, restore their habitats, and mitigate obstacles to migration.

  • Two species of hammerheads, all three threshers, and the silky shark – proposed for CMS Appendix II, which encourages regional cooperative initiatives to conserve shared populations.

  • Threats to their migration routes and habitat, including marine debris. Our trash underwater harms marine animals, entangles sharks and rays, and damages critical marine environments. Much like migratory animals, marine debris crosses political boundaries, moving from one territorial sea to the open ocean and ending up in another nation’s waters. As a multilateral environmental agreement, CMS can also address this issue, and thereby further improve the outlook for marine species.

Fact sheets on the newly listed species and how the listings might help them can be found here.

22 Shark and Ray Species Added to Scope of Global Agreement

22 Shark and Ray Species Added to Scope of Global Agreement

Signatories to the Convention on Migratory Species (CMS) Memorandum of Understanding (MoU) for Sharks have unanimously agreed to add twenty-two species of sharks and rays to the MoU scope, and to accept the applications of six conservation groups as Cooperating Partners in fulfilling MoU objectives. Conservationists are, in turn, calling on countries to take concrete national and international actions to fulfill new commitments to the imperiled species.

Conserving Migratory Sharks & Rays: Priorities for Action Governments gathering to discuss the next steps in implementing the Convention on Migratory Species (CMS) Memorandum of Understanding (MoU) for Sharks have an important opportunity to make real progress in addressing the global plight of sharks and rays, particularly the 29 species currently listed on the CMS Appendices. Beyond adding species and working groups to the CMS MoU scope of work, there are multiple avenues for immediate, concrete action that can go a long way toward fulfilling CMS obligations for listed species, as well as broader commitments to cooperate toward better protection for these vulnerable animals. Our organizations welcomed the 2010 CMS MoU for the seven shark species listed between 1999 and 2008, participated in development of the 2012 Conservation Plan to promote MoU objectives, and celebrated the historic listing of 21 additional species (15 rays on Appendix I & II and six sharks on Appendix II) in 2014. Through the CMS Sharks MoU and Conservation Plan, signatories have agreed, inter alia, to: § facilitate a better understanding of shark populations and fisheries § set science-based catch limits in an effort to ensure sustainable fishing § prevent “finning” (slicing off a shark’s fins and discarding the body at sea) § cooperate toward shark conservation through international bodies, and § protect critical shark habitats. Shark species covered by the CMS Sharks MoU, after listings from 1999 to 2008: § Whale shark (Rhincodon typus) § White shark (Carcharodon carcharias) § Basking shark (Cetorhinus maximus) § Porbeagle (Lamna nasus) § Spiny dogfish (Squalus acanthias) § Shortfin mako (Isurus oxyrinchus) § Longfin mako (Isurus paucus) Shark & ray species listed in 2011 & 2014, not yet covered by the Sharks MoU: § All five species of sawfish (Family Pristidae) § All nine species of devil rays (Mobula spp.) § Both manta rays (Manta spp.) § All three thresher sharks (Alopias spp.) § Great hammerhead (Sphyrna mokarran) § Scalloped hammerhead (Sphyrna lewini) § Silky shark (Carcharhinus falciformis) CMS w 2NDMEETING OF SIGNATORIES TO THE SHARKS MOU w FEBRUARY 2016 As the first intergovernmental treaty dedicated to global shark conservation, the CMS MoU has bolstered efforts to safeguard these vulnerable species, through both awareness and action. Listings on the Appendices, in particular, have been a major factor in numerous domestic protections while also serving to highlight at-risk species for other international fora. Nearly four years after adoption of the Conservation Plan, however, concrete actions to fulfill MoU goals remain insufficient. For example, the following are regrettable: § The lack of species-specific regional plans for listed shark species, even the first to be listed (whale sharks) § The absence of Regional Fishery Management Organization (RFMO) catch limits for shortfin mako sharks § The repeated defeat of US and EU proposals to cap shortfin mako landings through ICCAT1 § Exceptions to the protections for manta and devil ray (mobulids) adopted last year by the IATTC2 § Continued fishing and lack of national protections for mobulid rays, particularly Mobula species § Weak national and international finning bans that rely on complicated fin-to-body ratios for enforcement § Little cooperation among countries aiming to recover shared porbeagle and spiny dogfish populations § The small proportion of Signatories submitting national reports. In addition to expanding the MoU’s scope to cover all shark and ray species listed on the CMS Appendices (adding the 22 species listed in 2011 and 2014 to MoU Annex I), and in line with appropriate amendments to the Conservation Plan (MoU Annex 3), associated work program, priorities and strategy, we urge CMS Parties and Non-Party Signatories to take the following concrete steps: § Ensure strict national protection for all Appendix I listed species, especially those listed by IUCN as Endangered or Critically Endangered (all sawfish in Family Pristidae and giant devil ray Mobula mobular) § Co-sponsor and actively promote EU/US-led efforts to establish shortfin mako catch limits under ICCAT § Develop and promote proposals to establish shortfin mako catch limits at other relevant RFMOs § Seek to end exceptions to the mobulid ray protections adopted in 2015 by IATTC § Develop and promote proposals to protect mobulid rays through other relevant RFMOs § Support proposals to list mobula rays, thresher sharks, and silky sharks under CITES3 Appendix II § Ensure national finning bans include best practice prohibitions on at-sea fin removal, without exception § Co-sponsor EU/US-led proposals to strengthen RFMO finning bans by prohibiting at-sea fin removal § Establish active inter-sessional working groups to focus on specific regional conservation priorities § Encourage neighboring countries to sign the Sharks MoU § Complete and submit in a timely manner national progress reports to the CMS Secretariat § Consider proposing to list depleted angel sharks and guitarfishes as well as heavily fished blue sharks. Our organizations are grateful for the opportunity to collaborate with Signatories as Cooperating Partners under the MoU. Through actions like those urged above, we can ensure a brighter future for sharks and rays. Shark Advocates International is a project of The Ocean Foundation working to safeguard sharks and rays through sound, science-based conservation policy. Supporting work in more than 35 countries, Humane Society International is one of the only international organizations working to protect all animals. The Shark Trust is a UK charity working to advance the worldwide conservation of sharks through science, education, influence and action. Project AWARE Foundation is a growing movement of scuba divers protecting the ocean planet – one dive at a time. Defenders of Wildlife is dedicated to the protection of all native animals and plants in their natural communities

New commitments and partners agreed by Signatories to Convention on Migratory Species Shark MoU

The CMS 2010 Shark MoU is the first global instrument dedicated to the conservation of migratory sharks and rays. The addition of 22 species (listed on the CMS Appendices in 2011 and 2014) brings the total number of species under the MoU’s scope to 29: white shark, porbeagle, spiny dogfish, basking shark, both makos, all three threshers, two species of hammerheads, whale shark, all nine devil rays, both mantas, all five sawfishes, and the silky shark. The number of MoU Signatories rose to 40 (39 national governments and the EU) with this week’s addition of Portugal.

“We are encouraged by the growing number of countries that are engaging in CMS shark and ray conservation activities, and welcome the expansion of the Shark MoU scope,” said Sonja Fordham of Shark Advocates International. “At the same time, we are eager for countries to follow up with concrete actions in line with these commitments, particularly strict protections for highly threatened rays, and fishing limits to ensure the long-term health of migratory shark populations.”

Through the CMS Shark MoU and associated Conservation Plan, signatories have agreed to facilitate a better understanding of shark populations and fisheries, set science-based catch limits, prevent “finning” (slicing off a shark’s fins and discarding the body at sea), protect critical shark habitats, and cooperate toward shark conservation through international fisheries and wildlife bodies. Shark Advocates International, Shark Trust, and Project AWARE were among the conservation groups accepted as Cooperating Partners in fulfilling Sharks MoU objectives.

“Our organizations are honored by the opportunity to serve as Cooperating Partners and thereby collaborate toward migratory shark and ray conservation with countries at the forefront of this critical work,” said Ali Hood, Director of Conservation for the Shark Trust. “This status gives us a special opportunity to share expertise and provide support while ensuring implementation of the associated Conservation Plan.”

CMS Parties are obligated to strictly protect the manta and devil rays and the five sawfishes (through listing on CMS Appendix I), and to work internationally to conserve the sharks listed on Appendix II.

“We applaud Costa Rica for hosting this important and successful meeting, and for the country’s past initiatives to secure international trade controls on hammerheads and to strengthen shark finning bans on a global scale,” said Ania Budziak, Associate Director for Project AWARE. “We are hopeful that new commitments made this week will lead to strict national protections for devil rays and sawfishes, and the end of Costa Rican opposition to regional fishing limits for hammerhead and silky sharks.”

Source: 22 Shark and Ray Species Added to Scope of Global Agreement

Marine Debris

Understanding the Problem

Marine Debris

Our ocean is under siege. From everyday trash like plastic bags, food wrappers and drink bottles, to larger items like car batteries, kitchen appliances and fishing nets, our debris is entering the sea at an alarming rate. Our ocean has become a dumping ground.

Marine debris is not only unsightly, it’s dangerous to sea life, hazardous to human health, and costly to our economies. Marine animals can become entangled in debris or mistake small particles of trash for food – often with fatal results. Divers, swimmers and beachgoers can be directly harmed by encounters with debris or its toxins. And, the costs of plastic debris to marine ecosystems are estimated at 13 billion dollars a year.

Join us and take action against marine debris.

Working Toward Solutions

Project AWARE fights for the prevention and reduction of marine debris. Through our Partnerships Against Trash, we work with governments, NGOs and businesses to affect change on a global scale. In order to achieve a long-term solution, we must influence policy at local, national and international levels and prevent trash from entering the ocean in the first place.

Global change is empowered by grassroots movement. We need you – ocean enthusiasts and the scuba diving community – to help by taking action in your local communities!

Through Dive Against Debris, Project AWARE supporters remove undersea litter collected while diving and report results. Trash removed during Dive Against Debris makes the ocean safer for marine life, and more importantly, information reported helps inform policy change. With your help, Project AWARE can use the information you report through Dive Against Debris to convince individuals, governments and businesses to act against marine debris.

Together, we can work towards a clean, healthy ocean planet. Dive Against Debristoday.

Understanding the Problem Our ocean is under siege. From everyday trash like plastic bags, food wrappers and drink bottles, to larger items like car batteries, kitchen appliances and fishing nets, our debris is entering the sea at an alarming rate. Our ocean has become a dumping ground.

Source: Marine Debris

Sharks in Peril

We are emptying the ocean of sharks. Thankfully, divers are some of sharks’ closest and most influential allies. Together, we are creating a powerful, collective voice to lead global grassroots change. You’ve helped us secure a stronger EU finning ban and bring about safeguards for highly traded shark and ray species under CITES.

Sharks in Peril

TAKE ACTION

Here’s why your actions to protect sharks matter:

Nearly one out of four shark and ray species is classified by the IUCN (International Union for Conservation of Nature) as Threatened with extinction and ray species are found to be at higher risks than sharks. That doesn’t even include almost half of all sharks and ray species whose population status cannot be assessed because of lack of information.

Why do we worry about shark populations? A healthy and abundant ocean depends on predators like sharks keeping ecosystems balanced. And living sharks fuel local economies in some places, like Palau where sharks bring in an estimated $18 million per year through dive tourism.

They may rule the ocean, but sharks are vulnerable. They grow slowly, produce few young, and, as such, are exceptionally susceptible to overexploitation.

Overfishing is driving sharks to the brink – with many populations down by 80 percent. Tens of millions are killed each year for their meat, fins, liver, and other products.

Bycatch– or catching sharks incidentally while fishing for other commercial species – poses a significant threat to sharks. At the same time, new markets for shark products are blurring the line between targeted and accidental catches.

Finning– Shark fins usually fetch a much higher price than shark meat, providing an economic incentive for the wasteful and indefensible practice of “finning” (removing shark fins and discarding the often still alive shark at sea).  Finning is often associated with shark overfishing, especially as keeping only the fins allows fishermen to kill many more sharks in a trip than if they were required to bring back the entire animal.

Shark fishing continues largely unregulated in most of the world’s ocean. Yet the future of sharks hinges on holding shark fishing and trade to sustainable levels. The best way to ensure an end to finning is to require that sharks are landed with their fins still “naturally” attached. Fishing limits must be guided by science and reflect a precautionary approach while trade must be controlled and monitored. We must also invest in shark research and catch reporting, and protect vital shark habitats. We can lead change locally through innovative, results orientated action on the ground. And last, but most definitely not least, if you choose to eat seafood, refrain from a purchase unless you can be certain that it’s coming from a sustainable source.

Source: Sharks in Peril

Mares Viper Pro w/bungee

Mares Viper Pro w/bungee

Viper PRO

The Viper Pro and Viper sling guns are characterized by excellent quality construction; paired with innovative technical solutions that make it possible to guarantee great precision, power, maximum rigidity, and manageability. Optional swiveling band fork adapter, for traditional dual slings. Stainless steel release mechanism in a reversed position, manufactured in stainless steel with high-precision laser cut parts. Adjustable trigger sensitivity, and on Viper Pro the distance between the trigger and the handle can be customized. Stainless steel side line-releaser and two lateral alligator clips. Speed ø 6.5-mm tahitian shaft, S-Power Speed ø 19-mm circular sling, and Vertical Spiro 65 reel on Venom Pro 90 and 75, Vertical Spiro 87 on Viper Pro 100 and 110-cm. Viper Pro is available in 75, 90, 100 and 110-cm lengths.

promotion_VP.jpg

Mares Mask Star

Mares Mask Star

Mask Star

Mask created specifically for spearfishing and freediving, offering a better field of vision paired with the smallest possible volume, thanks to the angled lenses and the extremely reduced eye-lens distance. Utilizing new types of silicone help eliminate undesirable fogging, and the dual-button ergonomic buckles make it even easier to adjust the strap. The Star is manufactured with a mono-silicone skirt.

Mask Mares i3

Mares Mask I3

Mask i3

An unparalled field of vision

• Tri-comfort skirt
• X-Shaped strap
• Quick-adjusting buckles

i3 scuba mask combines the advantages of the Tri-comfort technology with a huge field of vision. In addition to the wide central glass, smaller panels on each side guarantee peripheral vision that will blow you away. The ergonomic 2-button buckles allow for easy and secure adjustment of the strap even when diving with thick gloves.

NEW Mares Mask Essence LiquidSkinfor Fall 2016

NEW Mask for Fall 2016

Essence LiquidSkin

Mask Ess

Unique design for a unique technology

• Great comfort and ample field of vision
• Quick-adjusting buckles on the skirt
• Light, foldable, easy to store

The Essence scuba mask is the maximum expression of LiquidSkin technology. Silicone and glass come together and blend to create a mask that is truly one of a kind. Light and foldable,thanks to the buckles on the skirt, it offers a broad field of vision. All the features are orchestrated by the exclusive design, a synthesis of technology and aesthetics

%d bloggers like this: